Preparation and recognition properties of bovine hemoglobin magnetic molecularly imprinted polymers.
نویسندگان
چکیده
A simple method for the preparation of core-shell micro/nanostructured magnetic molecularly imprinted polymers (MIPs) for protein recognition is described. Magnetic MIPs were synthesized by copolymering gamma-aminopropyltrimethoxysilane and tetraethyl orthosilicate at the surface of Fe(3)O(4) nanospheres, which were directly covalently bound with template molecule, bovine hemoglobin (BHb), through imine bond. Transmission electron microscopy and scanning electron microscopy images showed that the Fe(3)O(4) nanospheres with diameter about 50-150 nm were coated with the MIPs layer with average thickness about 10 nm, which enabled the magnetic MIPs to have a sensitive and fast magnetic response. The proximity between the thickness of MIPs layer and the spatial size of BHb indicated that the imprinted sites almost situated at the surface of magnetic MIPs, leading a rapid adsorption saturation within 1 h. And the adsorption amounts of magnetic MIPs toward BHb were estimated to be 10.52 mg/g at pH 6.5, which was 4.6 times higher than that of magnetic nonmolecularly imprinted polymers. Meanwhile, the result of selective test showed that the magnetic MIPs had an excellent recognition capacity to BHb compared to the other nontemplate proteins. Except for the spatial size complementary between BHb and the binding sites in magnetic MIPs, the electrostatic interaction also was proven to be an important factor for recognizing the imprinting molecule.
منابع مشابه
Fabrication of a Selective and Sensitive Electrochemical Sensor Modified with Magnetic Molecularly Imprinted Polymer for Amoxicillin
A modified electrochemical sensor for the determination of amoxicillin (AMX) was reported in this paper. The magnetic molecularly imprinted polymer (MMIP) were suspended in AMX solution and then collected on the surface of a magnetic carbon paste electrode (CPE) via a permanent magnet, situated within the carbon paste electrode and then the voltammetry signals were recorded. It was confirmed th...
متن کاملSeparation of STIGMA STEROL using magnetic molecularly imprinted nanopolymer fabricated by sol-gel method
Background & Aims: Magnetically molecularly imprinted polymers (MMIPs) are assumed as kind of sorbent polymers ‎which can separate or determine bioactive compounds from environment fast and specifically. ‎Magnetic properties, stability at various conditions (temperature , ionic strength and pH) and selective ‎function are among the advantages of these polymers in determin...
متن کاملPreparation of core-shell magnetic molecularly imprinted polymer nanoparticles for recognition of bovine hemoglobin.
Imprinting nanoparticles: Core-shell bovine hemoglobin (BHb) imprinted magnetic nanoparticles (MNPs) with a mean diameter of 210 nm have been synthesized for the first time. The imprinted magnetic nanoparticles could easily reach the adsorption equilibrium and magnetic separation under an external magnetic field, thus avoiding problems related to the bulk polymer. In this work, the core-shell b...
متن کاملMagnetic molecularly imprinted polymer beads for drug radioligand binding assay.
Molecularly imprinted polymer-magnetic iron oxide composite materials which exhibit recognition properties and can be withdrawn from solution by application of a magnetic field were prepared for the first time. Magnetic iron oxide was incorporated using a suspension polymerisation methodology with a perfluorocarbon liquid as the dispersing phase for the preparation of methacrylic acid-1,1,1-tri...
متن کاملThe Novel Critical Point Drying (CPD) Based Preparation and Transmission Electron Microscopy (TEM) Imaging of Protein Specific Molecularly Imprinted Polymers (HydroMIPs)
We report the transmission electron microscopy (TEM) imaging of a hydrogel-based molecularly imprinted polymer (HydroMIP) specific to the template molecule bovine haemoglobin (BHb). A novel critical point drying based sample preparation technique was employed to prepare the molecularly imprinted polymer (MIP) samples in a manner that would facilitate the use of TEM to image the imprinted caviti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 114 11 شماره
صفحات -
تاریخ انتشار 2010